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Describing and Comparing Protein Structures Using Shape Strings 
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Abstract: Different methods for describing and comparing the structures of the tens of thousands of proteins that have 
been determined by X-ray crystallography are reviewed. Such comparisons are important for understanding the structures 
and functions of proteins and facilitating structure prediction, as well as assessing structure prediction methods. We sum-
marize methods in this field emphasizing ways of representing protein structures as one-dimensional geometrical strings. 
Such strings are based on the shape symbols of clustered regions of /  dihedral angle pairs of the polypeptide backbones 
as described by the Ramachandran plot. These one-dimensional expressions are as compact as secondary structure de-
scription but contain more information in loop regions. They can be used for fast searching for similar structures in data-
bases and for comparing similarities between proteins and between the predicted and native structures. 
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1. INTRODUCTION 

 Protein structures can be described numerically or 
graphically. In either case there is a trade-off between com-
pleteness and perspicuity. The only way to comprehensively 
describe a protein structure is by listing the xyz coordinates 
of all atoms as found in the Protein Data Bank (PDB) [1] 
(http://www.pdb.org/). Most protein molecules contain hun-
dreds and even thousands of atoms. It means that thousands 
of real numbers are needed to describe a protein structure by 
listing xyz coordinates of all atoms as is done in PDB. Not 
only is it difficult for the human brain to grasp so much in-
formation, it is also not easy to compare the structures of 
different proteins by computers. 

 With more than 42,000 (March, 2007) protein structures 
in the rapidly growing PDB, structure comparison techniques 
have become increasingly important. It is widely accepted 
that protein structures are more conserved than their amino 
acid sequences [2]. Thus, protein structure comparison can 
be used to detect distant homologues whose sequences have 
diverged so much that no obvious sequence similarity can be 
detected. In fact, analyses of structural families have shown 
that homologous proteins frequently share less than 20% 
sequence identity [3]. For example, the sequences of triose-
phosphate isomerase from Escherichia coli (PDB code 
1TRE_A, 255 amino acids) and that from Pyrococcus woesei 
(1HG3_A, 225 amino acids) share only 18% sequence iden-
tity although they both belong to the triosephosphate 
isomerase (TIM) family and have very similar 3D structures 
(2.5Å root mean square deviation (RMSD) for 212 aligned 
C  atoms, see Fig. 1). The construction of structural families 
by comparing available 3D protein structures, in turn, sup-
plies better knowledge about the variation of sequences 
within protein families [4].  
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Fig. (1). The protein triosephosphate isomerase from Pyrococcus 

woesei (1HG3_A; black) is aligned with that from Escherichia coli 
(1TRE_A; gray) by rigid body superposition. The RMSD of the 
alignment based on C  atoms is 2.5Å, although the sequence iden-
tity is only 18%. Structural alignment was made by CE [8]. Cartoon 
representation generated by PyMOL [9]. 
 

 SCOP [5] and CATH [6], the two most widely used data-
bases which classify protein structural domains hierarchi-
cally, provide a detailed and comprehensive description of 
the structural and evolutionary relationships between all do-
mains of protein structures deposited in the PDB. SCOP is 
manually curated while CATH employs both automated 
computation and manual inspection. 

 The evaluation of the quality of predicted structure mod-
els requires a quantitative measure of the similarities be-
tween model structures and real structures, as is done in the 
Critical Assessment of Structure Prediction (CASP) [7]. In 
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CASP, hundreds or thousands of model structures are pre-
dicted for each target. These predicted model structures are 
compared with the released structures determined by X-ray 
crystallography or NMR and then ranked according to the 
similarity between a model structure and its real structure. 
Both global and local similarities are taken into account. 

 Comparing protein structures by superposing all atoms 
(often simplified by superposing C  atoms only) of one pro-
tein onto the other as rigid bodies is especially powerful in 
detecting subtle structural changes, including two forms of 
the same protein under different conditions such as pH or 
temperature. Nevertheless, it is computationally expensive 
and cannot detect the similarities between protein structures 
with large motions (e.g. hinge-bending) and extensive inser-
tions/deletions. This problem becomes crucial as more and 
more structures are available in PDB. Efficiency and sim-
plicity in structure description and comparison becomes es-
sential. Secondary structure based comparison methods [10-
17] were introduced to handle these limitations. These meth-
ods compare secondary structure elements (SSEs), which are 
usually defined by DSSP [18], of protein structures first and 
then carry out a more careful C  alignment between pairs of 
protein molecules (for reviews see Gibrat et al. [19], Carugo 
and Pongor [20] and Carugo [21, 22]). They are fast and can 
detect distantly related protein structures. However, on aver-
age, nearly half the amino acids in protein structures are in 
so-called random coil or loop regions and their conforma-
tions are not defined in the secondary structure description. 
Methods based on the alignment of SSEs are limited as a 
consequence.  

 Can we develop other methods to represent and compare 
protein structures which are as simple as secondary structure 
alignment based methods, yet not limited to SSEs but also 
taking the loop regions into account? Recently, several 
groups have endeavoured on developing such methods by 
representing the backbone structures of proteins as discrete 
torsion angles [23] or 1D strings of path in 3D space [24] or 
shape symbols [25]. These shape symbols represent clustered 
regions of /  torsion angle pairs in the Ramachandran plot 
[26] which has been revisited recently [27-30]. In this re-
view, these newly developed methods are summarized and 
compared with methods based on the alignment of C  atoms 
and SSEs. The advantages and disadvantages of the various 
methods are discussed and illustrated by several examples. 

2. DESCRIBING PROTEIN STRUCTURES 

2.1. Graphical Representation 

 Visual inspection is one of the most important and usu-
ally a first step in studying a protein structure, because this is 
the best way for the human brain to grasp the information. 
SCOP [5], which is widely used as the gold standard for pro-
tein structure comparisons [31-34], is manually created 
based on visual inspection. Even in CASP, although various 
methods have been used to facilitate evaluating the model 
structure, such as RMSD [35], Global Distance Test Total 
Score (GDT_TS) [36] (see Equation 1) and MaxSub score (a 
scalar in the range of 0 and 1, normalized from the size of 
the largest ‘well-predicted’ subset) [37], visual inspection is 
still used as a final decision [38, 39].  

 The standard way to visualize protein structures in 3D in 
a simplified way using helices and arrows was pioneered by 
Jane Richardson [40] who made beautiful drawings by hand 
(Fig. 2). Today such drawings are generated by computers, 
using many macro-molecular visualization tools such as Ras-
Mol [41]. Other molecular representations, e.g. ball and 
stick, space-filling and solid surface are used for various 
purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Illustration of the triosephosphate isomerase (TIM) barrel 
domain represented by a set of helices and arrows, drawn by Jane 
Richardson. [Reproduced from web version of Richardson [40] 
with permission] 

2.2. Shape Strings 

 The peptide bond in proteins is planar [42]. As a result of 
this, the backbone conformation in a polypeptide chain can 
be described by a pair of torsion angles (  and ), per resi-
due. Thus, the most compact, yet complete, description of 
the polypeptide chain needs just two numbers per amino 
acid. Ramachandran et al. [26] noted that only a few combi-
nations of these torsion angles are possible in proteins, as 
seen in the Ramachandran plot. In their plot (Fig. 3a, b), 
Ramachandran et al. predicted the commonly allowed re-
gions: R, L and -region, for / -angle pairs in the Rama-
chandran plot based on the analysis of steric hindrances of 
short peptides. Recent studies on the Ramachandran plot in 
real protein structures, using high-resolution X-ray crystal-
lography results in PDB, show that the allowed regions of 

/ -angle pairs in the observed plot differ from the original 
Ramachandran plot [27-30]. The first main difference is that 

R, L and -sheet regions are diagonal in the observed 
Ramachandran plot (Fig. 3c, d) while in the original 
Ramachandran plot (Fig. 3a, b) the edges of these regions 
are mostly parallel to one or both of the  or  axes. The 
second is that the -region (Fig 3a) is split into two diagonal 
lobes: the -sheet region (left) and the polyproline II region 
(right) [28, 29] (Fig. 3c). The third is that the two most popu-
lated regions for glycine (Fig. 3d) are in regions predicted to 
be only permissible in the standard Ramachandran plot (Fig. 
3b). These discrepancies were explained partly in terms of 
local electrostatic interaction by Ho et al. [43]. 
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Fig. (3). The classical version of the Ramachandran plot for (a) 
alanine (but often taken as typical for all non-glycines except 
proline) with three commonly allowed regions: R, L and -region 
and (b) glycine according to Ramachandran and Saisekharan [26]. 
The fully allowed regions are shaded and the partially allowed re-
gions are enclosed by solid lines. The connecting regions enclosed 
by the dashed lines are permissible with slight flexibility of bond 
angles. These plots were calculated by modelling tripeptides based 
on steric clashes. Although the overall features of these plots are 
correct, the details differ from the experimentally observed 
Ramachandran plots for (c) all 19 non-glycines and (d) glycine. (e) 
All 20 amino acids in random coils. [Reproduced from Hovmöller 
et al. [28] with permission] 
 

 Knowing that the allowed combinations of /  angles in 
the Ramachandran plot are highly clustered, we can assign a 
symbol to each cluster in the Ramachandran plot (see Fig. 
6c). The backbone structure of any protein molecule can then 
be expressed as a one-dimensional (1D) sequence of such 
symbols, one symbol for each amino acid; a shape string 
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[25]. Each shape symbol in the shape string corresponds to a 
certain region of backbone dihedral angles in the 
Ramachandran plot. The shape string of an entire protein 
carries a description of the entire 3D backbone structure. In 
contrast, the common secondary structure description with 
only 3 symbols, H ( -helix), E (extended -strand) and C 
(coil), can describe the -helices and -sheets accurately, but 
carries no information about the structure of the other half of 
all residues that are in the coils.  

 The most abundant shape symbol is the A shape which 
takes up about 45% of all residues (Table 1 and Fig. 4). That 
is because almost all residues in -helices are of the A shape 
and some residues in turn regions also have A shape. The 
second most abundant shape symbol is S which accounts for 
nearly 25% of all residues. Most of residues in -sheets are S 
shape. R shape corresponds to polyproline II regions, but it 
exists also in some slightly distorted -strands. The rest of 
shape symbols are less abundant, but they are also very im-
portant since they contain the extra information in the loop 
regions which is lacking in the standard secondary structure 
description. The distribution of shape symbols changes dra-
matically given the shape symbol of the preceding amino 
acid (Table 1 and Fig. 4). For example, in total, the A shape 
accounts for nearly 45% of all residues. However, the prob-
ability for a residue with A shape following a residue with A 
shape is 79% but after an amino acid with S shape, the prob-
ability for A is only 11%. 

 In Fig. (5) we investigate the property for a shape to ex-
tend itself. The probability for a residue to be A shape fol-
lowing residues with non-A shapes is quite low (only 17%). 
However, the probability increases quickly to 53% when one 
previous residue is A shape. This probability becomes even 
higher when two previous residues are both A shape (Fig. 
5a, See also supplementary data for detailed values). The 
distribution of 8 shape symbols for the residues following 
more than two residues all with A shapes becomes nearly 
constant, keeping the percentage for A shape at a very high 
(~91%) level. A similar phenomenon exits for the S shape, 

although the percentages of S shape are not as prominent as 
that of the A shape.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Distribution of 8 shape symbols for all residues (repre-
sented by All  in the legend, which gives out the background com-
position of shape symbols) and those following a residue with each 
of 8 shape symbols (S, R, U, V, K, A, T and G in the legend). See 
also Table 1 for detailed percentage values. The result were con-
structed from a non-redundant set of PDB (version 2006 April) 
culling at 30% sequence identity containing 4274 unique chains 
(created by PISCES server [44]).. The same dataset was used in the 
following text, unless specially mentioned. 

2.3. Describing Loop Regions by Shape Strings 

 The /  torsion angle pairs of backbone structures in 
loop regions are scattered over the entire allowed regions in 
the Ramachandran plot (Fig. 3e). This is contrary to -
helices (centred at  = -61°,  = -41°) and -sheets (centred 

Table 1. Percentages for 8 Shape Symbols for All Residues and for Those Following a Residue with each of 8 Shape Symbols. 

Complementary to Fig. (4). For Definition of Shape Symbols, See (Fig. 6C). 

                   Second a.a. 

First a.a. 
S (%) R (%) U (%) V (%) K (%) A (%) T (%) G (%) 

All 24.7 16.2 1.3 1.1 6.4 44.7 4.5 1.2 

S 54.2 24.7 1.4 1.4 3.2 11.2 2.3 1.6 

R 31.2 27.9 1.5 1.8 5.1 24.0 7.4 1.0 

U 15.2 33.6 1.3 2.1 4.4 36.5 3.3 3.7 

V 35.0 23.7 1.6 2.5 7.9 24.6 2.8 1.9 

K 24.8 24.5 2.3 1.4 6.2 18.2 19.2 3.5 

A 5.7 3.1 1.0 0.5 8.4 78.7 2.0 0.6 

T 28.9 35.6 1.6 1.8 6.1 15.0 10.1 1.0 

G 20.8 22.5 1.8 2.2 17.7 28.4 3.6 3.1 
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at  = -116°,  = 128° for parallel and  = -122°,  = 135° 
for anti-parallel) [28]. Despite this irregularity of /  angle 
pairs, loops can be classified into distinct classes [40, 45, 
46]. Moreover, Panchenko and Madej [47] showed a linear 
correlation between sequence similarity and average loop 
structural similarity, which indicates that the loop regions are 
rather systematic. Loops play an important role as structural 
determinants connecting the SSEs [40]. Residues in many 
loop regions are essential in stabilizing the local conforma-
tion [48] and are involved in enzymatic activities [49] and 
protein-protein interactions [50]. The accuracy of loop con-
formations often determines the usefulness of computational 
or experimental models, but this remains the most difficult 
part of comparative homology modelling [51, 52].  
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Fig. (5). Distribution of 8 shape symbols for residues following (a) 
0 to 8 residues with A shapes and (b) 0 to 8 residues with S shapes. 
Note that the distribution following zero A is different from the 
background shape string composition as shown in Fig. 4.  When 
counting the background composition, residues with A shape are 
following any shapes, including A, but here zero A means follow-
ing non-A shapes. Once an -helix is formed, it has a strong ten-
dency to continue. Most -helices are terminated by an amino acid 
with K shape (71%). Most -strands are terminated by R. 

 Accurate classification of loop conformation benefits 
structure predictions by comparative homology modelling. 
Such classification was originally carried out by visual in-
spection of protein structures [40, 53]. With the rapidly in-
creasing number of available protein structures, automatic 
classification methods are required. Oliva et al. [46] devel-
oped a semi-automated method for classification of struc-
tures of short loop regions in proteins by assigning torsion 
angles into 81 labelled, 40° x 40° grid squares in the 
Ramachandran plot (Fig. 6a). Loop conformations were de-
noted as strings of these shape symbols based on both the 
main-chain dihedral angles and the geometry of the bracing 
secondary structures. Their method can reproduce most fea-
tures of classifications done by manual analysis and identify 
several novel motifs for loops. Espadaler et al. [54] extended 
this work and developed a program called ArchDB which 
can classify longer loops than in previous work and also 
yields a more stable classification. ArchDB carries out clus-
tering based on a density search on the ( , ) space of the 
loop conformation, which allows a second check by RMSD.  

 Fitzkee et al. [56] have recently built a Protein Coil Li-
brary (PCL) which classifies protein structures in loop re-
gions by dividing backbone torsion angles into a coarse-
grained 30° x 30° , -grid following the work of Srinivasan 
and Rose [57]. The PCL library stores molecular coordi-
nates, dihedral angles and sequence information for each 
segment in loop regions. The database also supplies search-
ing and analysis tools, which make the database useful also 
for prediction and design of loop regions. 

 An accurate description of the conformation of short 
turns that connect two secondary structure elements is very 
important. In Table 2 we list the five most common shape 
strings of all short turns (from 2 to 5 residues) that connect 
two helices, a helix and a strand, a strand and a helix, or two 
strands. The shape strings in the turn regions are rather scat-
tered, showing the rich conformation in these regions. 

2.4. Describing Protein Structures by Shape Strings 

 As mentioned above, backbone structures of proteins can 
be expressed as 1D strings of shape symbols. These shapes 
are as compact as 1D strings of secondary structures but con-
tain information also in loop regions. Ison et al. [25] as-
signed torsion angles into only 8 highly clustered regions 
(Fig. 6c) in the Ramachandran plot, with specific boundary 
specification for each amino acid. A database with shape 
strings following this definition of all proteins in the PDB 
has been created by Zhou and Hovmöller (www.fos.su.se~/ 
pdbdna). A computer program Frags [25] was developed for 
exploiting this database for various purposes. A surprising 
property of shape strings is that they are highly converged in 
3D space, i.e., the backbone structures of all fragments with 
the same shape string are usually very similar in 3D. For 
example, the shape string segment SSSSRAKTRSSS (see 
Fig. (6c) for symbol assignment) is found 313 times in the 
non-redundant subset of PDB containing 4274 protein chains 
mentioned above. Note that the number of shape string 
SSSSRAKTRSSS retrieved by Frags is only 313, which is 
considerably less than 492, the number of shape string 
RAKTR found between two strands (Table 2). One reason is 
that secondary structures are defined by the hydrogen
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Fig. (6). Different schemes for assigning shape symbols for /  
angle pairs. The Ramachandran plot is divided into (a) 81 labelled, 
40° x 40° grid squares, and each /  angle pair is assigned to one of 
the 19 symbols (b/p and l/g represent conformations in the bridge 
regions between the b and p conformations and between the l and g 
conformations), [After Oliva [46] with permission]  (b) 11 regions; 
each /  angle pair is assigned to one of the 11 symbols (symbol c 
which represents the cis-peptide shape is not shown), [From By-
stroff [55] with permission] (c) eight clustered regions with specific 
boundaries for each amino acid; each /  pair is assigned to the 
nearest region, [After Ison et al. [25]] and (d) 36 labelled, 60° x 60° 
grid squares; each square is called a mesostate. [From Gong et al. 
[23] with permission] 
 

bonding in DSSP while shape strings are defined solely by 
torsion angles. Shapes other than S can be interpreted as 
strands in DSSP. Another reason is that the shape string 
RAKTR between very short strands (containing only 2 or 3 
residues) were not included among the 313 segments. These 
313 segments overlap to a large extent, as shown in Fig. (7). 
Note that each shape symbol represents a rather large area 
(see Fig. 6c) with a spread of torsion angles  and  in the 
order of +/- 20˚. This would have resulted in very different 
3D structures, if these differences were propagated through-
out the polypeptide segment. The apparent discrepancy be-
tween the alphabet defined in Fig. (6c) and the good super-
position of segments in Fig. (7) can be explained by 1) hy-
drogen bonds locking the amino acids into fixed positions 
and 2) /  distortions in residue i are often compensated by 
counteractive distortions in residue i+1. Due to these rea-
sons, the first and last amino acids in these 12-residue long 
segments are virtually exactly overlapping. This indicates 
that the 8-state conformation definition of Ison et al. [25] is a 
good representation of backbone torsion angle constrains. It 
is also in accordance with the observation by Kolodny et al. 
[58] that the conformation space of fragments of native 
structures is limited. They showed that any folded structure 
of globular proteins could be rebuilt accurately from a rela-
tively small fragment library containing only 20 five-residue 
segments. 
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Table 2. Frequencies of the shape strings of short turns or loops (2 to 5 amino acids long), connecting two helices (H*H), a helix and 

a strand (H*S), a strand and a helix (S*H), and two strands (S*S), respectively. For each case the five most frequent shape 

strings are listed. As the loops get longer, there are of course more possible shape strings, making each individual shape 

string less abundant, as seen by low percentages. Note, however, that the shape string RAKTR is very common between 

two strands. See also Fig. (7) for structural alignment of two strands connected by the five-long turn with shape string 

RAKTR. The secondary structure is defined by DSSP [18] while the shape strings are defined according to Fig. (6c) [25]. 

The existence of A shape following a helix, e.g. the AS shape string between two helices, are caused by differences in defini-

tions of DSSP and shape strings. The statistics is based on a non-redundant set of PDB containing 4274 protein chains as 

mentioned before. 

H*H H*S S*H S*S 

Size of turn Shapes Count % Shapes Count % Shapes Count % Shapes Count % 

2 RR 551 18.6 RA 316 14.9 AS 438 17.5 TT 1600 38.2 

 SR 260 8.8 TR 289 13.7 SR 339 13.6 GK 697 16.7 

 KR 221 7.4 SA 215 10.2 RR 289 11.6 AK 251 6.0 

 AS 170 5.7 TS 209 9.9 KS 226 9.1 GA 184 4.4 

 RS 162 5.5 KT 132 6.2 SS 135 5.4 RT 161 3.9 

3 TSR 248 8.4 KTR 410 13.3 SAS 132 6.8 SAK 115 5.6 

 KRR 165 5.6 TRA 277 9.0 SKS 67 3.4 RRR 102 4.9 

 ARR 156 5.3 KTS 264 8.5 RRR 66 3.4 AKG 91 4.4 

 TRR 146 4.9 TSR 190 6.1 RAS 56 2.9 SAA 79 3.8 

 KSR 112 3.8 ATR 148 4.8 ASR 54 2.8 ASR 74 3.6 

4 KTRR 198 8.4 KTRA 203 7.2 AKRR 37 2.2 AAKT 286 9.1 

 KTSR 118 5.0 ATRA 120 4.3 RRSR 34 2.0 AAAT 282 9.0 

 ATRR 95 4.0 KTSR 110 3.9 SRRR 22 1.3 ASAK 144 4.6 

 KTSS 56 2.4 KTRK 93 3.3 SAAR 21 1.3 RRTR 137 4.4 

 KTRS 49 2.1 KTRR 88 3.1 RRRR 20 1.2 AKTR 131 4.2 

5 KTASR 60 3.5 RRRTR 38 1.9 RAKRR 33 2.1 RAKTR 492 18.3 

 ATASR 33 1.9 KTASA 38 1.9 RAARR 26 1.6 RAATR 153 5.7 

 TSRRR 28 1.6 ATASA 32 1.6 RRTRR 23 1.4 RAKTS 97 3.6 

 UAARR 18 1.1 RSRTR 30 1.5 SSAAS 15 0.9 SAKTR 76 2.8 

 KTKSR 18 1.1 KTRAS 19 1.0 RRTRS 11 0.7 AAATR 67 2.5 

 

 Gong et al. [23] proved that it is possible to rebuild na-
tive protein conformation from highly approximated torsion 
angles grouped into 36 labelled, 60° x 60° grid squares, each 
called a mesostate (Fig. 6d). The 3D backbone protein struc-
ture is hence represented by a linear string of mesostates. 
The rebuilding procedure was carried out first by replacing 
each five-residue fragment within a target mesostate se-
quence with candidates selected from the pre-built fragment 
library. Then the fragments were assembled by Monte Carlo 
simulation with simulated annealing by using an energy 
function with three simple terms: (i) steric exclusion, (ii) 
hydrogen bonding and (iii) global compaction. Despite the 
large range of each mesostate (60° x 60°) and the crude en-
ergy function, near native protein conformations could be 
rebuilt from such very approximate mesostate strings. This 
discovery is important because approximate torsion angles 

can either be obtained directly from NMR spectroscopy [59] 
or predicted from torsion angle prediction methods. The lat-
ter means that the prediction of discrete torsion angles can be 
a good starting point for ab initio 3D structure prediction. 
Bystroff et al. [55] pioneered the prediction of torsion angles 
with a Hidden Markov Model in their HMMSTR package. 
The Ramachandran plot was divided into 11 conformational 
states (Fig. 6b). Kuang et al. [60] predicted backbone torsion 
angles based on machine learning methods. The torsion an-
gles were grouped into three or four conformation states 
which were derived from the definition of the conformation 
state by Oliva et al. [46]. 

2.5. Other 1D Expressions of Backbone Structures 

 Several groups have endeavoured on 1D expression of 
backbone structures different from those introduced above.
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Fig. (7). All 313 backbone fragments with the same shape string 
segment SSSSRAKTRSSS (see Fig. 6c for symbol assignment) 
found in 4274 unique protein chains (the non-redundant PDB men-
tioned above). They are very similar in the 3D conformation. Yel-
low/green lines are hydrogen bonds. Retrieved by Frags © Roger 
Ison [25].Colouring scheme: blue = nitrogen N, red = oxygen O, 
black = carbon C , grey = carbon C, green = strong (i.e. short) hy-
drogen bonds between N and O, yellow = weak (long) hydrogen 
bonds. 
 

Instead of assigning to each residue a shape symbol based 
only on the torsion angles of itself, Zhi et al. [24] developed 
a highly simplified description of protein structure that 
minimized local structural information by smoothing the 
protein backbone. The protein backbone was smoothed by 
averaging positions of C  atoms in a seven-residue window. 
It abstracted the protein structure as whether it is locally 
straight or curved. Even at this highly simplified level of 
protein structure description, the program can still classify 
structural domains successfully as compared with the SCOP 
[5] classification and other existing structural alignment pro-
grams. A potential reason for the success was explained by 
Zhi et al. [24] that natural proteins were constrained into a 
compact shape and there were only a limited number of ways 
to arrange a given turning angle series into a realistic com-
pact shape. This explanation is consistent with the finding of 
Ison et al. [25] that the backbone structures of fragments 
with the same shape string are highly overlapping.  

 Friedberg et al. [61] represented protein structures as 1D 
strings called KL-string as developed by Kolodny and Levitt 
[58]. The KL-string was built based on a library of 20 frag-
ments of protein backbone. Only the C  atoms were used for 
each amino acid. Fragments were chosen randomly but with 
secondary structure constrain. The library of fragments was 
generated by grouping 7133 five-residue long non-
overlapping fragments from 200 protein domains into 20 
clusters based on their RMSD from one another as described 
in Kolodny and Levitt [62]. These 20 elements served as 
building blocks to encode protein structures as KL-strings. 
Kolodny and Levitt [62] showed that small all-  proteins 
could be adequately recreated by these 20 fragments, indicat-
ing that KL-strings are satisfactory 1D representations of the 

3D protein structure. Given that these fragments have only 
five residues, loop regions much longer than five residues 
cannot be rebuilt correctly, since the selection of the frag-
ments is constrained only by the SSEs, but there are no SSEs 
in loop regions.  

 X-ray structures deposited in PDB are all rigid. However, 
we should always keep in mind that protein structures are 
dynamical in vivo. Describing protein structure dynamics is 
outside the scope of this paper. Readers interested in protein 
dynamics can refer to Urbanc et al. [63], Krebs et al. [64] 
and Ming et al. [65]. 

3. COMPARING PROTEIN STRUCTURES 

 Comparing protein structures includes identifying simi-
larities and dissimilarities among protein structures. This is 
often referred to as protein structure alignment. Although 
significant progress has been made over the past decades, a 
unique, reliable, fast and convergent method for 3D protein 
structure alignment is still lacking. Defining the similarity 
between two protein structures still remains a major problem 
[66]. When aligning two rather similar protein structures, 
rigid body superposition can overlay one structure onto the 
other successfully. The similarity between them can be eas-
ily measured by the overall RMSD of for example C  posi-
tions. On the other hand, when comparing distantly related 
protein structures, identifying the equivalent core residues 
between compared protein structures remains difficult. This 
results in considerable ambiguity in describing the similarity 
between protein structures [67]. Many structural alignment 
methods yield different alignments for remotely related pro-
tein structures [32, 68].  

3.1. Rigid Body Superposition 

 The earliest approach to compare two protein structures 
is to superpose all atoms of one protein onto the other as 
rigid bodies, as pioneered by Rao and Rossman [35]. The 
structural similarity is measured as the RMSD of the Euclid-
ean distances between atoms (usually just the C ) of equiva-
lent residues [35]. Many algorithms have been proposed for 
comparing protein structures based on rigid body superposi-
tion (for a review see Holm and Sander [69]). These methods 
vary in procedures for identifying the equivalent core resi-
dues and the process for finding the optimal rotation. Com-
parisons between protein structures under different condi-
tions are quite common in a variety of fields, such as struc-
tural biology [70] and drug design [71]. In these fields, pro-
tein structures under different physiological conditions, e.g. 
temperature, pH, ionic concentration or ligand bind-
ing/unbinding, are studied extensively. In those cases, usu-
ally only subtle conformational changes on a few residues or 
even side chain atoms take place.  

 Many studies have proven that two protein structures 
must be rather similar if their RMSD is small [72, 73]. How-
ever, it should also be noticed that the RMSD is affected not 
only by the conformational similarity, but also by the overall 
size [74] and the accuracy of the experimentally determined 
structures [75] of the proteins being compared. Due to these 
limitations, RMSD can not be used directly as a scale to 
measure the similarity between two protein structures, that 
is, one can not assure that two structures with a smaller 
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RMSD are more similar than two protein structures with a 
larger RMSD. As a consequence, Carugo and Pongor [76] 
suggested using rmsd100, which normalized the RMSD of 
two protein structures as if they had 100 equivalent C  at-
oms, to measure the similarity between two aligned struc-
tures. This method was then extended by Carugo [77] by 
introducing the P values to access the statistical significance 
between two rmsd100 values. Comparing protein structures 
only by superposing the whole protein structure as rigid bod-
ies is simple and understandable and can detect subtle con-
formation changes between similar structures, but it can not 
detect all similarities between two proteins with large con-
formation changes such as hinge-bending. Hinges are com-
mon in proteins in different conditions of ligand binding. An 
example is the calcium-binding protein calmodulin which 
undergoes a significant conformational change via binding 
of a 25-residue peptide (Fig. 9). The rigid body superposition 
method is further challenged in comparing distantly related 
protein structures where extensive insertions/deletions exist. 
Another drawback of this method is that it is much more 
computationally expensive compared to sequence align-
ments. 

 Improvements of the rigid body superposition method 
have been proposed for comparing protein structures with 
flexibilities by introducing twists at positions with hinge-
bending movements. This approach was originated by Wrig-
gers and Schulten [78] and Verbitsky et al. [79] by assuming 
prior knowledge of the location of potential hinges. Shatsky 
et al. [80] presented an algorithm, FlexProt, which automati-
cally detected hinge regions in protein structures. In their 
algorithm, the protein molecules to be compared were di-
vided into a minimal number of separate fragments with 
maximal size. The equal-size fragment pairs were then de-
tected based on RMSD and later the rigid fragment pairs 
were linked together and finally consecutive fragment pairs 
with a similar 3D transformation were clustered. This algo-
rithm is as efficient as rigid body structure alignment algo-
rithms despite the fact that FlexProt can detect hinge regions 
automatically. Ye and Godzik [81] developed another algo-
rithm, FATCAT, for flexible structural alignment using dy-
namic programming to connect aligned fragment pairs 
(AFP). FATCAT introduces fewer twists with similar 
RMSDs compared to FlexProt.  

3.2. Structural Alignment Based on SSEs 

 With the introduction of twists, protein structures with 
large motions (e.g. hinge-bending) can be aligned success-
fully, as was done in FlexProt and FATCAT. Even so, rigid 
body superposition still fails to align distantly related protein 
structures where extensive insertions/deletions exist. Since 
insertions/deletions occur more often in loop regions, one 
approach is to first discard the more variable loop regions 
and compare only SSEs between proteins. A more careful C  
alignment is performed later when the equivalence among 
SSEs of compared structures are found [10-17] (refer to Ca-
rugo and Pongor [20] for more details). Yang and Honig [17] 
introduced the protein structural distance (PSD) to measure 
similarities between compared protein structures, taking both 
high level secondary structure alignment and C  alignment 
into account.  

 Another advantage of structure alignment based on SSEs 
is its efficiency. The average number of SSEs for a protein 
with a length of 300 amino acids is 20 to 25, i.e., more than 
one order of magnitude less than its number of C  atoms. 
This makes structure comparisons based on SSEs much 
faster than comparisons based on rigid body superposition of 
C  atoms. Therefore, structure comparisons based on SSEs 
are suitable for fast database searching of similar structures. 
However, when comparing two different protein structures 
with similar SSE orders, they might fail to recognize the 
difference in global conformation, since they neglect the 
conformations of loop regions connecting SSEs (see Fig. 9 

for an example of two proteins with the same secondary 
structure orders while having significantly different topol-
ogy). This will result in many false positives in fast database 
searching for similar structures. In addition, the determina-
tion of SSEs from 3D protein structures is not without ambi-
guities, especially at the beginning and end of SSEs. Ander-
sen and Rost [82] recently reviewed the principles of the 
most popular assignment methods DSSP [18], STRIDE [83], 
DEFINE [84] and P-Curve [85]. They found that DEFINE 
and P-curve and likewise DEFINE and DSSP agreed in 74% 
of all residues, P-Curve and DSSP agreed in 79% of all resi-
dues, and DSSP and STRIDE agreed in 96% of all residues. 
For the assignment of -turns, the agreement is lower, for 
example, DSSP and STRIDE agreed in 89% of all -turn 
residues, and DSSP and DEFINE agreed in 60% of all -
residues [86]. 

3.3. Comparison of Different Methods 

 Different descriptions of protein structures are used for 
different purposes of structure comparisons. In studying sub-
tle changes in side chain conformations of the active site 
residues upon ligand binding, methods superposing all atoms 
are most useful. When comparing only the polypeptide back-
bone, pair-wise rigid body superposition of C  atoms may be 
sufficient. However, methods based on rigid body 
superposition do not satisfy the need for fast structure data-
base searches. They are computationally too expensive and 
also cannot align remotely related structures. Methods based 
on the alignment of SSEs are fast and can handle extensive 
insertions/deletions but might miss the global similarity of 
compared protein structures. The 1D expression of backbone 
structures based on torsion angles [25, 87], averaged C  po-
sitions [24] or basic fragments [61], as described in previous 
sections, are as compact as the traditional secondary struc-
ture description. Since the structure is reduced to a 1D se-
quence, standard dynamic programming can be used. Thus, 
these 1D strings of shape symbols are as efficient as secon-
dary structure sequences for fast database searching for simi-
lar structures. In addition, they are more accurate in identify-
ing structural similarities because of their extra information 
in loop regions compared to the three-state secondary struc-
ture description.  

 We benchmarked FATCAT, CE, KL string alignment, 
shape string alignment and BLAST pairwise sequence 
alignment in finding the similar protein structures based on 
the FSB dataset used in Friedberg et al. [61]. This dataset 
was constructed on the basis of SCOP 1.61 cutting at 40% 
sequence identity. The benchmark has 6233 pairs of similar 
structures (within the same SCOP fold) and 8769 pairs of 
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dissimilar structures (not in the same SCOP fold). The re-
sults for FATCAT and CE were obtained from the FATCAT 
website (http://fatcat.burnham.org/fatcatbench/) and the re-
sults for KL string alignment and BLAST pairwise sequence 
alignment were obtained from Friedberg et al. [61]. The 
shape string alignment was carried out using the standard 
Smith and Waterman dynamic programming with -12 and –2 
as penalties for gap opening and extension, respectively. The 
raw alignment scores were used to represent the structural 
similarity. The substitution matrix was derived from struc-
tural alignment of 2430 pairs of SCOP domains from SCOP 
1.38 cutting at 40% sequence identity (the structural align-
ments were obtained from Levitts website: http://csb.stan-
ford.edu/levitt/, see also the supplemental data for the 
substitution matrix used by the shape string alignment). The 
ROC curves for different methods are shown in Fig. 8. 
According to the ROC-curves, FATCAT is the most 
successful method to identify the similarities in protein struc-
tures, followed by CE. Among three 1D alignment based 
methods, namely BLAST, KL string alignment and shape 
string alignment, shape string alignment and KL string 
alignment performed significantly better than BLAST, the 
amino acid sequence based alignment. Shape string align-
ment performed slightly better than the KL-string alignment. 
As to the computational efficiency, BLAST is the fastest 
method, KL string alignment and shape string are at the 
same level and these two are both about three orders of mag-
nitude faster than CE and FATCAT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (8). ROC curves for five methods, FATCAT, CE, Shape string 
alignment, KL-string alignment and BLAST pairwise sequence 
alignment in identifying similar protein structures benchmarked on 
a dataset constructed from SCOP 1.61 cutting at 40% sequence 
identity.  
 

 Two examples are given below to demonstrate the effi-
ciency of shape strings in comparing protein structures. 

3.3.1. Comparing Protein Structures with Hinges 

 Calmodulin from Drosophila melanogaster is a calcium 
binding protein. It has quite different 3D conformations in 
two PDB entries, 4CLN [88] (Fig. 9a) and 1MXE_A [89] 

(Fig. 9b). Note that both 4CLN and 1MXE_A are calcium- 
loaded. The structure of 1MXE_A differs greatly from that  
of 4CLN because of the binding of an alpha helical peptide  
(Fig. 9b). A standard pair-wise C  structural alignment  
considering the whole protein as a rigid body does not  
superpose one protein onto the other. Only half of the  
residues are close in 3D space (Fig. 9c). In contrast, shape  
string alignment clearly shows the structural similarity of the  
two molecules throughout the entire protein (Fig. 9e). The  
shape symbols are all matched perfectly, except for the  
significant mismatches at positions 79 and 80 at the location  
of the hinge. Other minor mismatches, e.g. position 128 and  
129 and at the N- and C-terminals, correspond to smaller  
deviations in structure at these regions. Note that loop  
regions as marked in Fig. (9e) contain complex and valuable  
strings of shape symbols; while three-state secondary  
structure description will ignore this rich conformational  
information by setting them all as C (coil). Despite the  
complexity of shape symbols in loop regions, shape string  
alignment can align them satis-factorily, indicating its  
advantage in aligning loop regions. FATCAT [81] can also  
detect the similarity of the whole structure successfully by  
allowing one twist at Thr79 of 4CLN (Fig. 9d), but it is  
about three orders of magnitude more computational expen- 
sive than shape string alignment. 

3.3.2. Comparing Protein Structures with the Same SSEs  

 The A chain of the protein tagatose-1,6-bisphosphate 
(1GVF [91]) and the A chain of human mitochondrial 2,4-
dienoyl-CoA reductase (1W6U [92]) have the same order of 
secondary structure elements HEHEHEHEHEHEHEHEH 
(H: -helix, E: -strand). While 1GVF_A has a TIM beta/ 
alpha-barrel fold, 1W6U_A has an NAD(P)-binding Ross-
mann-fold domain (Fig. 10a, b) according to SCOP [5]. 
Rigid body superposition as is done by CE reveals the great 
differences in 3D structure between 1GVG_A and 1W6U_A 
(Fig. 10c). However, a simple dynamic programming based 
shape string alignment (Fig. 10e) reveals not only the simi-
larity in secondary structures (by the well aligned A shape 
and R/S shape) but also the massive global conformational 
difference (by the extensive gaps and mismatches of these 
two proteins, since those gaps and unmatched regions are all 
representing different 3D conformations). Note that the mis-
matches between A and T, R and T and S and T (see Fig. 6c 
for symbol assignment) in some loop regions as marked in 
Fig. (10e) indicate as much as 180° difference in the  an-
gles. In addition, the equally efficient structural alignment 
based simply on SSEs (note that here we mean the pure one-
dimensional SSE alignment) might not distinguish the dif-
ference between these two structures due to the same orders 
of secondary structure elements for 1GVF_A and 1W6U_A. 
Interestingly, FATCAT superposes 1GVG_A quite well 
(significantly similar annotated by FATCAT server with P-
value of 1.31e-2) on 1W6U_A, which falsely gives an im-
pression that these two protein structures are quite similar in 
3D. This is because FATCAT has introduced too many 
twists (5 twists) in the alignment. The introduction of each 
twist will disregard the structural dissimilarity in a short loop 
region. The introduction of too many twists tends to result in 
an overoptimistic structure alignment, especially for proteins 
with similar SSEs but different overall topologies, such as 
the proteins in this example. 
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Fig. (9). Different 3D conformation of calmodulin in PDB structures (a) 4CLN [88] and (b) 1MXE_A[89] as well as the structural alignment 
of 4CLN and 1MXE_A made by (c) rigid body superposition (by program CE [8]), (d) FATCAT [81] and (e) shape string alignment (using 
standard dynamic programming of Needleman and Wunsch [90]). The 3D structure of calmodulin in the PDB structure 1MXE_A undergoes a 
dramatic conformational change upon binding of a helical peptide (shown in black b). Note that this conformational change is different from 
the conformation change of calmodulin upon calcium binding. In the structural alignment (c) and (d), 4CLN is shown in black while 
1MXE_A is in grey. In the shape string alignment, small conformational changes, i.e. between two regions adjacent in the Ramachandran plot 
(Fig. 6c) are marked by ‘.’. Cartoon representations were made by PyMOL [9]. 
'---' (hyphen): Positions without shape string definition at C- and N-terminals as well as residues without atomic coordinates in PDB or with 
too high temperature factor, the same in Fig. 10e.  : The position of hinge. : Loop regions. 
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Fig. (10). Cartoon representations of the different proteins 1GVF_A (a) and 1W6U_A (b), and the structural alignments by (c) CE, (d) 
FATCAT and (e) shape strings of these two proteins. In (c) and (d), 1GVF_ A is  shown in  black  while 1W6U_A is in light grey. Rigid body 
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(Legend Fig. 10) contd…. 

 
superposition as was done by CE (c) reveals the dissimilarity of these two structures in 3D. However, FATCAT aligns these two structures 
quite well by introducing five twists, which might result in an overoptimistic impression about the similarity between these two structures. On 
the other hand, the shape strings match the secondary structure elements while also revealing the many conformation differences in loop re-
gions by the extensive gaps and mismatches in the loop regions as marked by the fat horizontal double-arrows. 
'___' (underscore): Gap. '---' (hyphen): Positions without shape string definition. : Loop regions with significant mismatch in shape 
string. 
 

 Shape string alignment still has its limitations. Alignment 
between all alpha proteins (or all beta proteins) tends to give 
out a high score for alignment even though the overall to-
pologies are different. Therefore, the shape string identity is 
not sufficient for proving structural similarity. In contrast to 
the well studied amino acids sequence alignment methods 
[93-95], no study has yet been done to assess the statistical 
significance of shape string alignment. 

3.4. Comparing Model Structures to Real Structures 

 In protein structure prediction, a common question is to 
assess the quality of the predicted structures. The judgement 
of the prediction accuracy of a model structure is often car-
ried out by comparing the model structure to its real structure 
as is done in CASP.  

 Comparing the similarity between model structures pre-
dicted by various 3D structure prediction methods and their 
real structures is essential for evaluating structure prediction 
methods. Generally speaking, the comparison between a 
model structure and its real structure is relatively easy since 
they have the same amino acid sequence, which means the 
equivalent residues are already determined. Hence, the major 
difficulty lies in the measurement of the similarity between 
protein structures that are compared. Model structures gener-
ated by comparative homology modelling based on close 
homologues are usually quite close to their real structures. 
Thus the similarity can be easily measured by the overall 
RMSD or normalized RMSD (e.g. rmsd100) after optimal 
superposition of one protein onto the other as rigid bodies. 
However, for model structures predicted based on fold rec-
ognition or even de novo structure prediction when no obvi-
ous homology can be detected from the available structure 
database, rigid body superposition is not sufficient any more, 
since these model structures are often quite different from 
their real structures. In CASP, one of the standard evaluation 
methods is the GDT_TS (Global Distance Test Total Score) 
[36, 96], 

  GDT_P8)/4  GDT_P4  GDT_P2  (GDT_P1  GDT_TS +++=   (1) 

where GDT_Pn denotes percent of residues under distance 
cutoff  nÅ. The GDT_TS score can identify multiple 
maximum substructures of the model structure that can be 
superimposed over the real structure cutting at different dis-
tance thresholds (e.g. 1, 2, 4 and 8 Å as represented in Equa-
tion 1). It was used by all three assessors (comparative mod-
elling, fold recognition and new fold prediction) in both 
CASP5 [39] and CASP6 [38]. Another important method for 
evaluating model structures is MaxSub [37], which is based 
on similar principles as GDT (Global Distance Test). Max-
Sub computes a normalized score ranging from 0 (for a com-
pletely wrong model) to 1 (for a perfect model)  and thus it is 

especially suitable for evaluating the model structures pre-
dicted by fully automatic servers. MaxSub has been applied 
in CAFASP2 [97] and CAFASP3 [98] successfully.  

 Both GDT_TS and MaxSub focus only on the size of the 
substructure, while the spatial information of the templates 
outside of the substructure is partially neglected. In addition, 
the scores of GDT_TS and MaxSub are power-law depend-
ent on the size of the protein [99]. Zhang and Skolnick [99] 
developed a new scoring function, TM-score (template mod-
elling score), which overcomes the above two limitations of 
GDT_TS and MaxSub by introducing a protein size-
dependent scale to eliminate the inherent protein size de-
pendency, and by evaluating all residue pairs in align-
ment/modelling in the proposed score. TM-score shows a 
significant outperformance to both GDT_TS and MaxSub 
when benchmarked in CASP5 targets. Based on TM-score, 
Zhang and Skolnick have also developed a protein structural 
alignment program, TM-align [100], which shows advantage 
in both speed and accuracy compared to conventional struc-
tural alignment methods, e.g. CE [8] and DALI [101].  

 Sims and Kom [102] compared the HOPPscore with 
GDT_TS score by analyzing CASP6 models. Although no 
significant correlation exists between HOPPscore and 
GDT_TS score, they found that in general, model structures 
with low GDT_TS scores had also large differences in 
HOPPscores while models with fairly good GDT_TS scores 
had good HOPPscores as well. Actually, the vectors used in 
Sims and Kom [102] to denote fragments of model structures 
are quite similar to shape strings. They are both 1D strings of 
discrete /  angle pairs, while the former are rounded down 
to a certain bin size and the latter are mapped to highly clus-
tered regions representing the natural conformation con-
strains in the Ramachandran plot. It means that shape strings 
might be more reliable in representing the natural conforma-
tion space of protein fragments and a useful tool for evaluat-
ing the quality of model structures. The program Frags by 
Ison et al. [25] supplies a function for returning the fre-
quency of occurrence for any shape string fragment in the 
library, but no implementation has been done yet with re-
spect to evaluating the quality of entire model structures.  

4. CONCLUSIONS 

 The increasing number of structures in PDB gives us 
great opportunities to dig out information about the struc-
tures of proteins. On the other hand, it requires efficient and 
accurate methods for describing and comparing protein 
structures. The secondary structure expression of protein 
structures reduces the complexity in describing protein struc-
ture enormously as opposed to listing xyz coordinates of all 
atoms in proteins. The widely used protein structure classifi-
cation databases such as SCOP and CATH are all based on 
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secondary structure elements. As to comparing the protein 
structures, all atom rigid body superposition is the most use-
ful methods for quantifying detailed structural differences of 
proteins. However, it is computationally demanding and 
cannot align distantly related protein structures with many 
indels. Structure comparison methods based on alignment of 
secondary structure elements have been introduced to handle 
these limitations.  

 Given that secondary structure description does not dis-
tinguish the conformations in loop regions (which account 
for on average nearly half of all amino acids), comparisons 
based on secondary structure elements might not classify 
global similarity correctly. Methods based on one-
dimensional geometrical representation of protein backbone 
structures are becoming important. These one-dimensional 
representations, especially shape strings, encode loop regions 
as well as secondary structure elements in a rather accurate 
way. In this review, we have shown some advantages of 
shape strings in structure comparison and homology identifi-
cation. However, the current applications of shape strings are 
rather preliminary. For structure comparison, more accurate 
alignment that best make use of the properties of shape 
strings as well as the analysis of the statistical significance of 
shape string alignment are required. Moreover, prediction of 
shape strings instead of the secondary structures of proteins 
might be an alternative way to start 3D structure prediction. 
Both the prediction of shape strings and the building of 3D 
structures from shape strings need further research. 

 Shape strings facilitate fast database searching for similar 
structures, classification of loop regions and evaluation of 
model structures. We can expect more widely use of such 
methods in the near future. 
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